[an error occurred while processing the directive]
   Линейная алгебра и геометрия
   Справочник формул




Прикладная математика
основные математические формулы











     Геометрия пространств со скалярным произведением / О геометрии / 1 2 3


О геометрии


О геометрии

1. В течение многих столетий под геометрией понималась геометрия Евклида на плоскости и в пространстве. Она продолжает составлять основное содержание обычного школьного курса, и эволюцию геометрических понятий удобно проследить на примере характерных особенностей этой, ныне весьма частной, геометрической дисциплины.

2. "Фигуры". Школьная геометрия начинается с изучения таких фигур на плоскости, как прямые, углы, треугольники, окружности и круги и т. п. Естественное обобщение этой ситуации состоит в выборе некоторого пространства M, "объемлющего пространства" нашей геометрии, и некоторого множества подмножеств в M - изучаемых в этом пространстве "фигур".

3. "Движения". Вторая существенная компонента школьной геометрии - это измерение длин и углов и выяснение соотношений между линейными и угловыми элементами различных фигур. Потребовалось длительное историческое развитие, прежде чем было осознано, что в основе этих измерений лежит существование отдельного математического объекта - группы движений евклидовой плоскости или евклидова пространства как целого, и что все метрические понятия могут быть определены в терминах этой группы. Например, расстояние между точками является единственной функцией от пары точек, инвариантной относительно группы евклидовых движений (если потребовать ее непрерывности и еще выбрать "единицу длины" - расстояние между выбранной парой точек). "Эрлангенская программа" Ф. Клейна (1872) зафиксировала понимание этого замечательного принципа, и "геометрией" надолго стало изучение пространств M, снабженных достаточно большой группой симметрий, и свойств фигур, инвариантных относительно действия этой группы, включая углы, расстояния и объемы.


-1-2-3-


   a
   б
   в
   г
   д
   е
   ж
   з
   и
   к
   л
   м
   н
   о
   п
   р
   с
   т
   у
   ф
   х
   ц
   ч
   ш
   щ
   э
   ю
   я
© 2007-2008 ФиПМ

Линейная алгебра и геометрия
математические формулы, он-лайн справочник