[an error occurred while processing the directive]
   Линейная алгебра и геометрия
   Справочник формул




Прикладная математика
основные математические формулы











     Линейные пространства и линейные отображения / Подпространства и прямые суммы / 1 2 3 4 5 6 7 8 9


b) Если , то во всяком случае

и ,

потому что объединение базисов Li порождает L и, значит, содержит базис L. По теореме п. 3, примененной к Lj и , имеем

Но размерность пересечения слева нулевая по предыдущему утверждению. Кроме того, если сумма всех Li прямая, то и сумма всех Li, кроме Lj, прямая, и мы можем по индукции считать, что

. Поэтому .

Наоборот, если , то объединение базисов всех Li состоит из dim L элементов и порождает все L, а потому является базисом в L. В самом деле, нетривиальное представление нуля , дало бы нетривиальную линейную комбинацию элементов этого базиса, равную нулю, что невозможно.

Рассмотрим теперь связь между разложениями в прямую сумму и специальными линейными операторами - проекторами.


-1-2-3-4-5-6-7-8-9-


   a
   б
   в
   г
   д
   е
   ж
   з
   и
   к
   л
   м
   н
   о
   п
   р
   с
   т
   у
   ф
   х
   ц
   ч
   ш
   щ
   э
   ю
   я
© 2007-2008 ФиПМ

Линейная алгебра и геометрия
математические формулы, он-лайн справочник